Solutions to Quiz 2, 2019

Problem 1

Use the Bio-Savart law,

$$
\begin{equation*}
d \mathbf{H}=\frac{I d \mathbf{l} \times \mathbf{R}}{4 \pi R^{3}} \tag{1}
\end{equation*}
$$

1) Consider the horizontal arms first. On those arms, $I d \mathbf{l}=I d x \mathbf{a}_{x}$ and $\mathbf{R}= \pm x \mathbf{a}_{x}$. It follows at once from Eq. 1 that since $I d \mathbf{l} \times \mathbf{R}=0$, we have no contribution to the field at the center due to the horizontal arms.
2) Consider now the semi-circle. On the semi-circle, $I d \mathbf{l}=-I b d \phi \mathbf{a}_{\phi}$. The minus sign comes from the fact that the positive direction of \mathbf{a}_{ϕ} is counterclockwise. Next, $\mathbf{R}=b \mathbf{a}_{\rho}$ and $R=b$. It then follows from Eq. 1 that

$$
\begin{equation*}
d \mathbf{H}=\frac{-I b d \phi\left(\mathbf{a}_{\phi} \times \mathbf{a}_{\rho}\right) b}{4 \pi b^{3}}=\frac{I d \phi}{4 \pi b} \mathbf{a}_{z} . \tag{2}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\mathbf{H}=\int_{\pi}^{0} d \phi \frac{I}{4 \pi b} \mathbf{a}_{z}=-\frac{I}{4 b} \mathbf{a}_{z} . \tag{3}
\end{equation*}
$$

The limits of integration correspond to going from the left to the right end of the semi-circle. The minus sign in Eq. 2 implies that the field is directed into the plane of the loop.

Problem 2

1) Method I. Working in the spherical coordinates,

$$
\mathbf{B}=\nabla \times \mathbf{A}=\frac{1}{r^{2} \sin \theta}\left|\begin{array}{ccc}
\mathbf{a}_{r} & r \mathbf{a}_{\theta} & r \sin \theta \mathbf{a}_{\phi} \\
\partial_{r} & \partial_{\theta} & \partial_{\phi} \\
0 & 0 & \frac{1}{2} r^{2} \sin ^{2} \theta
\end{array}\right|=\mathbf{a}_{r} \cos \theta-\mathbf{a}_{\theta} \sin \theta
$$

2) Method II. Alternatively, observing that $\mathbf{A}=\frac{1}{2} \rho \mathbf{a}_{\phi}$, we can work in the cylindrical coordinates,

$$
\mathbf{B}=\nabla \times \mathbf{A}=\frac{1}{\rho}\left|\begin{array}{ccc}
\mathbf{a}_{\rho} & \rho \mathbf{a}_{\phi} & \mathbf{a}_{z} \\
\partial_{\rho} & \partial_{\phi} & \partial_{z} \\
0 & \frac{1}{2} \rho^{2} & 0
\end{array}\right|=\mathbf{a}_{z}
$$

The two answers are equivalent as can be readily inferred from your formula sheet.

Problem 3

a) By definition, $I=\int d \mathbf{S} \cdot \mathbf{J}$. In this case, $d \mathbf{S}=R d \phi d z \mathbf{a}_{\rho}$ on the cylindrical surface. It follows that

$$
I=\int_{0}^{L} d z \int_{0}^{2 \pi} d \phi\left(\mathbf{a}_{\rho} \cdot \mathbf{a}_{\rho}\right) R J_{0}(R / R)=2 \pi R L J_{0}
$$

b) The divergence of the current density reads,

$$
\begin{equation*}
\nabla \cdot \mathbf{J}=\frac{1}{\rho} \partial_{\rho}\left(\rho J_{\rho}\right)=\frac{1}{\rho} \partial_{\rho}\left(J_{0} \frac{\rho^{2}}{R}\right)=2 J_{0} / R . \tag{4}
\end{equation*}
$$

The continuity equation implies that

$$
\begin{equation*}
\partial_{t} \rho_{v}=-\nabla \cdot \mathbf{J}=-2 J_{0} / R \tag{5}
\end{equation*}
$$

It follows by integrating Eq. 5 that

$$
\begin{equation*}
\rho_{v}(\mathbf{r}, t)=\rho_{v}(\mathbf{r}, 0)-2 J_{0} t / R=\rho_{v 0}-2 J_{0} t / R . \tag{6}
\end{equation*}
$$

c) It follows at once from Eq. 6 that the current density vanishes at the finite time

$$
t_{*}=\frac{\rho_{v 0} R}{2 J_{0}} .
$$

